769 lines
29 KiB
Python
769 lines
29 KiB
Python
import os
|
|
import discord
|
|
import io
|
|
import pymongo
|
|
from discord.ext import commands, tasks
|
|
from discord import app_commands
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
import logging
|
|
import sys
|
|
from openai import OpenAI, RateLimitError
|
|
import aiohttp
|
|
from runware import Runware, IImageInference
|
|
from collections import defaultdict
|
|
import asyncio
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
from dotenv import load_dotenv
|
|
from pymongo import MongoClient
|
|
from flask import Flask, jsonify
|
|
import threading
|
|
import tiktoken
|
|
load_dotenv()
|
|
|
|
# Flask app for health-check
|
|
app = Flask(__name__)
|
|
|
|
# Health-check endpoint
|
|
@app.route('/health', methods=['GET'])
|
|
def health():
|
|
"""
|
|
Checks if the bot is ready and connected to Discord.
|
|
"""
|
|
if bot.is_closed(): # Bot is disconnected
|
|
return jsonify(status="unhealthy", error="Bot is disconnected"), 500
|
|
elif not bot.is_ready(): # Bot is not ready yet
|
|
return jsonify(status="unhealthy", error="Bot is not ready"), 500
|
|
else:
|
|
return jsonify(status="healthy"), 200
|
|
|
|
# Run Flask server in a separate thread
|
|
def run_flask():
|
|
"""
|
|
Starts the Flask server.
|
|
"""
|
|
app.run(host="0.0.0.0", port=5000)
|
|
|
|
# OpenAI client initialization
|
|
client = OpenAI(
|
|
base_url=str(os.getenv("OPENAI_BASE_URL")),
|
|
api_key=str(os.getenv("OPENAI_API_KEY")),
|
|
)
|
|
|
|
# List of bot statuses
|
|
statuses = [
|
|
"Powered by GPT-4o!",
|
|
"Generating creative text!",
|
|
"Creating images on demand!",
|
|
"Answering your queries with AI!",
|
|
"Exploring AI capabilities!",
|
|
"Crafting stories with GPT!",
|
|
"Generating artwork with AI!",
|
|
"Transforming ideas into text!",
|
|
"Your personal AI assistant!",
|
|
"Making text-based magic happen!",
|
|
"Bringing your prompts to life!",
|
|
"Searching the web for you!",
|
|
"Summarizing information with AI!",
|
|
"Discussing the latest AI trends!",
|
|
"Innovating with neural networks!",
|
|
"Providing image generation services!",
|
|
"Curating knowledge with AI!",
|
|
"Explaining concepts in simple terms!",
|
|
"Generating visuals for your ideas!",
|
|
"Answering coding questions!",
|
|
"Enhancing your creativity!",
|
|
"Crafting engaging dialogues!",
|
|
"Bringing imagination to reality!",
|
|
"Your AI-powered content creator!",
|
|
"Exploring the world of AI art!",
|
|
"Helping you learn with AI!",
|
|
"Generating prompts for inspiration!",
|
|
"Creating stunning visuals!",
|
|
"Answering trivia questions!",
|
|
"Your source for AI-generated insights!",
|
|
"Delving into the world of machine learning!",
|
|
"Providing data-driven answers!",
|
|
"Crafting personalized content!",
|
|
"Exploring creative AI solutions!",
|
|
"Summarizing articles for you!",
|
|
"Generating memes with AI!",
|
|
"Transforming text into images!",
|
|
"Enhancing your projects with AI!",
|
|
"Creating unique characters with GPT!",
|
|
"Exploring AI storytelling!",
|
|
"Generating logos and designs!",
|
|
"Helping you brainstorm ideas!",
|
|
"Creating educational content!",
|
|
"Your creative writing partner!",
|
|
"Building narratives with AI!",
|
|
"Exploring ethical AI use!",
|
|
"Bringing concepts to life visually!",
|
|
"Your AI companion for learning!",
|
|
"Generating infographics!",
|
|
"Creating art based on your prompts!",
|
|
"Exploring AI in entertainment!",
|
|
"Your gateway to AI innovation!",
|
|
]
|
|
# List of available models
|
|
MODEL_OPTIONS = [
|
|
"gpt-4o",
|
|
"gpt-4o-mini",
|
|
"o1-preview",
|
|
"o1-mini",
|
|
"o1"
|
|
]
|
|
|
|
# Prompt for different plugins
|
|
WEB_SCRAPING_PROMPT = "You are using the Web Scraping Plugin, gathering information from given url. Respond accurately and combine data to provide a clear, insightful summary. "
|
|
NORMAL_CHAT_PROMPT = "You're ChatGPT for Discord! You can chat, generate images, and perform searches. Craft responses that are easy to copy directly into Discord chats, without using markdown, code blocks, or extra formatting. When you solving any problems you must remember that: Let's solve this step-by-step. What information do we need to find? What operation might help us solve this? Explain your reasoning and provide the answer."
|
|
SEARCH_PROMPT = "You are using the Google Search Plugin, accessing information from the top 3 Google results link which is the scraped content from these 3 website. Summarize these findings clearly, adding relevant insights to answer the users question."
|
|
|
|
# Google API details
|
|
GOOGLE_API_KEY = str(os.getenv("GOOGLE_API_KEY")) # Google API Key
|
|
GOOGLE_CX = str(os.getenv("GOOGLE_CX")) # Search Engine ID
|
|
|
|
# Runware API key
|
|
RUNWARE_API_KEY = str(os.getenv("RUNWARE_API_KEY"))
|
|
|
|
#MongoDB URI
|
|
MONGODB_URI = str(os.getenv("MONGODB_URI"))
|
|
|
|
# Initialize Runware SDK
|
|
runware = Runware(api_key=RUNWARE_API_KEY)
|
|
|
|
# MongoDB client initialization
|
|
mongo_client = MongoClient(MONGODB_URI)
|
|
db = mongo_client['chatgpt_discord_bot'] # Database name
|
|
|
|
# Dictionary to keep track of user requests and their cooldowns
|
|
user_requests = defaultdict(lambda: {'last_request': 0, 'queue': asyncio.Queue()})
|
|
|
|
# Dictionary to store user conversation history
|
|
user_histories = {}
|
|
|
|
# Bot token
|
|
TOKEN = str(os.getenv("DISCORD_TOKEN"))
|
|
|
|
# --- Database functions ---
|
|
|
|
def get_history(user_id):
|
|
user_data = db.user_histories.find_one({'user_id': user_id})
|
|
if user_data and 'history' in user_data:
|
|
return user_data['history']
|
|
else:
|
|
return [{"role": "system", "content": NORMAL_CHAT_PROMPT}]
|
|
|
|
def save_history(user_id, history):
|
|
db.user_histories.update_one(
|
|
{'user_id': user_id},
|
|
{'$set': {'history': history}},
|
|
upsert=True
|
|
)
|
|
|
|
# New function to get the user's model preference
|
|
def get_user_model(user_id):
|
|
user_pref = db.user_preferences.find_one({'user_id': user_id})
|
|
if user_pref and 'model' in user_pref:
|
|
return user_pref['model']
|
|
else:
|
|
return "gpt-4o" # Default to "gpt-4o" if no preference
|
|
|
|
def save_user_model(user_id, model):
|
|
db.user_preferences.update_one(
|
|
{'user_id': user_id},
|
|
{'$set': {'model': model}},
|
|
upsert=True
|
|
)
|
|
|
|
# Intents and bot initialization
|
|
intents = discord.Intents.default()
|
|
intents.message_content = True
|
|
|
|
# Bot initialization
|
|
bot = commands.Bot(command_prefix="!", intents=intents, heartbeat_timeout=120)
|
|
tree = bot.tree # For slash commands
|
|
|
|
# Function to perform a Google search and return results
|
|
def google_custom_search(query: str, num_results: int = 3) -> list:
|
|
search_url = "https://www.googleapis.com/customsearch/v1"
|
|
params = {
|
|
"key": GOOGLE_API_KEY,
|
|
"cx": GOOGLE_CX,
|
|
"q": query,
|
|
"num": num_results
|
|
}
|
|
try:
|
|
response = requests.get(search_url, params=params, timeout=15) # Add timeout
|
|
response.raise_for_status() # Check for any errors in the response
|
|
data = response.json()
|
|
|
|
# Check if 'items' key is present in the response
|
|
if 'items' in data:
|
|
results = []
|
|
for item in data['items']:
|
|
title = item.get('title', 'No Title') # Get title or default to 'No Title'
|
|
link = item.get('link', 'No Link') # Get link or default to 'No Link'
|
|
results.append(f"Title: {title}\nLink: {link}\n" + "-" * 80)
|
|
return results
|
|
else:
|
|
print("No items found in the response.")
|
|
return []
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
print(f"Error during request: {e}")
|
|
return []
|
|
|
|
# Function to scrape content from a webpage
|
|
def scrape_web_content(url: str) -> str:
|
|
try:
|
|
headers = {
|
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.5845.97 Safari/537.36'
|
|
}
|
|
page = requests.get(url, headers=headers, timeout=10) # Add timeout
|
|
|
|
# Check HTTP status code
|
|
if page.status_code != 200:
|
|
return f"Error: Received status code {page.status_code} for {url}"
|
|
|
|
soup = BeautifulSoup(page.content, "html.parser")
|
|
|
|
# Extract all paragraphs
|
|
paragraphs = soup.find_all("p")
|
|
if paragraphs:
|
|
text = " ".join([p.get_text() for p in paragraphs])
|
|
return text.strip()
|
|
else:
|
|
return "No content found."
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
return f"Failed to scrape {url}: {str(e)}"
|
|
except Exception as e:
|
|
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
# Processes a command request with rate limiting and queuing.
|
|
async def process_request(interaction, command_func, *args):
|
|
user_id = interaction.user.id
|
|
now = discord.utils.utcnow().timestamp()
|
|
last_request = user_requests[user_id]['last_request']
|
|
|
|
if now - last_request < 5:
|
|
await interaction.followup.send("You are sending requests too quickly. Please wait a moment.", ephemeral=True)
|
|
return
|
|
|
|
# Update last request time
|
|
user_requests[user_id]['last_request'] = now
|
|
|
|
# Add request to queue
|
|
queue = user_requests[user_id]['queue']
|
|
await queue.put((command_func, args))
|
|
|
|
# Start processing if it's the only request in the queue
|
|
if queue.qsize() == 1:
|
|
await process_queue(interaction)
|
|
|
|
# Processes requests in the user's queue sequentially.
|
|
async def process_queue(interaction):
|
|
user_id = interaction.user.id
|
|
queue = user_requests[user_id]['queue']
|
|
|
|
while not queue.empty():
|
|
command_func, args = await queue.get()
|
|
await command_func(interaction, *args)
|
|
await asyncio.sleep(1) # Optional delay between processing
|
|
|
|
# Slash command to let users choose a model and save it to the database
|
|
@tree.command(name="choose_model", description="Select the AI model to use for responses.")
|
|
async def choose_model(interaction: discord.Interaction):
|
|
options = [discord.SelectOption(label=model, value=model) for model in MODEL_OPTIONS]
|
|
select_menu = discord.ui.Select(placeholder="Choose a model", options=options)
|
|
|
|
async def select_callback(interaction: discord.Interaction):
|
|
selected_model = select_menu.values[0]
|
|
user_id = interaction.user.id
|
|
|
|
# Save the model selection to the database
|
|
save_user_model(user_id, selected_model)
|
|
await interaction.response.send_message(
|
|
f"Model set to `{selected_model}` for your responses.", ephemeral=True
|
|
)
|
|
|
|
select_menu.callback = select_callback
|
|
view = discord.ui.View()
|
|
view.add_item(select_menu)
|
|
await interaction.response.send_message("Choose a model:", view=view, ephemeral=True)
|
|
|
|
# Slash command for search (/search)
|
|
@tree.command(name="search", description="Search on Google and send results to AI model.")
|
|
@app_commands.describe(query="The search query")
|
|
async def search(interaction: discord.Interaction, query: str):
|
|
"""Searches Google and sends results to the AI model."""
|
|
await interaction.response.defer(thinking=True)
|
|
user_id = interaction.user.id
|
|
history = get_history(user_id)
|
|
|
|
history.append({"role": "user", "content": query})
|
|
|
|
try:
|
|
# Perform Google search
|
|
search_results = google_custom_search(query, num_results=2)
|
|
if not search_results:
|
|
await interaction.followup.send("No search results found.")
|
|
return
|
|
|
|
# Scrape content from the first 5 links
|
|
scraped_contents = []
|
|
for result in search_results:
|
|
url = result.split('\n')[1].split('Link: ')[1]
|
|
content = scrape_web_content(url)
|
|
scraped_contents.append(content)
|
|
|
|
# Prepare the combined input for the AI model
|
|
combined_input = f"{SEARCH_PROMPT}\nUser query: {query}\nScraped Contents:\n" + "\n".join(scraped_contents)
|
|
|
|
history.append({"role": "system", "content": combined_input})
|
|
|
|
# Send the history to the AI model
|
|
response = client.chat.completions.create(
|
|
model="gpt-4o",
|
|
messages=history,
|
|
temperature=0.4,
|
|
max_tokens=4096,
|
|
top_p=1
|
|
)
|
|
|
|
reply = response.choices[0].message.content
|
|
history.append({"role": "assistant", "content": reply})
|
|
save_history(user_id, history)
|
|
|
|
# Send the final response to the user
|
|
await interaction.followup.send(reply)
|
|
|
|
except Exception as e:
|
|
await interaction.followup.send(f"Error: {str(e)}", ephemeral=True)
|
|
|
|
# Slash command for web scraping (/web)
|
|
@tree.command(name="web", description="Scrape a webpage and send data to AI model.")
|
|
@app_commands.describe(url="The webpage URL to scrape")
|
|
async def web(interaction: discord.Interaction, url: str):
|
|
"""Scrapes a webpage and sends data to the AI model."""
|
|
await interaction.response.defer(thinking=True)
|
|
user_id = interaction.user.id
|
|
history = get_history(user_id)
|
|
|
|
try:
|
|
content = scrape_web_content(url)
|
|
if content.startswith("Failed"):
|
|
await interaction.followup.send(content)
|
|
return
|
|
|
|
history.append({"role": "user", "content": f"Scraped content from {url}"})
|
|
history.append({"role": "system", "content": content})
|
|
|
|
response = client.chat.completions.create(
|
|
model="gpt-4o",
|
|
messages=history,
|
|
temperature=0.3,
|
|
max_tokens=4096,
|
|
top_p=0.7
|
|
)
|
|
|
|
reply = response.choices[0].message.content
|
|
history.append({"role": "assistant", "content": reply})
|
|
save_history(user_id, history)
|
|
|
|
await interaction.followup.send(reply)
|
|
|
|
except Exception as e:
|
|
await interaction.followup.send(f"Error: {str(e)}", ephemeral=True)
|
|
|
|
# Reset user chat history from database
|
|
@tree.command(name="reset", description="Reset the bot by clearing user data.")
|
|
async def reset(interaction: discord.Interaction):
|
|
"""Resets the bot by clearing user data."""
|
|
user_id = interaction.user.id
|
|
db.user_histories.delete_one({'user_id': user_id})
|
|
await interaction.response.send_message("Your data has been cleared and reset!", ephemeral=True)
|
|
|
|
# Slash command for user statistics (/user_stat)
|
|
@tree.command(name="user_stat", description="Get your current input token, output token, and model.")
|
|
async def user_stat(interaction: discord.Interaction):
|
|
"""Fetches and displays the current input token, output token, and model for the user."""
|
|
user_id = interaction.user.id
|
|
history = get_history(user_id)
|
|
model = get_user_model(user_id)
|
|
|
|
# Handle cases where user model is not found
|
|
if not model:
|
|
model = "gpt-4o-mini" # Default model
|
|
|
|
# Adjust model for encoding purposes
|
|
if model in ["gpt-4o", "o1", "o1-preview", "o1-mini"]:
|
|
encoding_model = "gpt-4o"
|
|
else:
|
|
encoding_model = model
|
|
|
|
# Retrieve the appropriate encoding for the selected model
|
|
encoding = tiktoken.encoding_for_model(encoding_model)
|
|
|
|
# Initialize token counts
|
|
input_tokens = 0
|
|
output_tokens = 0
|
|
|
|
# Calculate input and output tokens
|
|
if history:
|
|
for item in history:
|
|
content = item.get('content') # Safely access 'content'
|
|
|
|
# Handle case where content is a list or other type
|
|
if isinstance(content, list):
|
|
# Convert list of objects to a single string (e.g., join texts with a space)
|
|
content = " ".join(
|
|
sub_item.get('text', '') for sub_item in content if isinstance(sub_item, dict)
|
|
)
|
|
|
|
# Ensure content is a string before processing
|
|
if isinstance(content, str):
|
|
token_count = len(encoding.encode(content))
|
|
if item['role'] == 'user':
|
|
input_tokens += token_count
|
|
elif item['role'] in ['assistant', 'developer']:
|
|
# Treat 'developer' as 'assistant' for token counting
|
|
output_tokens += token_count
|
|
|
|
# Create the statistics message
|
|
stat_message = (
|
|
f"**User Statistics:**\n"
|
|
f"Model: `{model}`\n"
|
|
f"Input Tokens: `{input_tokens}`\n"
|
|
f"Output Tokens: `{output_tokens}`\n"
|
|
)
|
|
|
|
# Send the response
|
|
await interaction.response.send_message(stat_message, ephemeral=True)
|
|
|
|
|
|
# Slash command for help (/help)
|
|
@tree.command(name="help", description="Display a list of available commands.")
|
|
async def help_command(interaction: discord.Interaction):
|
|
"""Sends a list of available commands to the user."""
|
|
help_message = (
|
|
"**Available Commands:**\n"
|
|
"/choose_model - Select the AI model to use for responses (gpt-4o, gpt-4o-mini, o1-preview, o1-mini).\n"
|
|
"/search `<query>` - Search on Google and send results to AI model.\n"
|
|
"/web `<url>` - Scrape a webpage and send data to AI model.\n"
|
|
"/generate `<prompt>` - Generate an image from a text prompt.\n"
|
|
"/reset - Reset your conversation history.\n"
|
|
"/remaining_turns - Check the remaining chat turns for each model.\n"
|
|
"/user_stat - Get your current input token, output token, and model.\n"
|
|
"/help - Display this help message.\n"
|
|
"**Các lệnh có sẵn:**\n"
|
|
"/choose_model - Chọn mô hình AI để sử dụng cho phản hồi (gpt-4o, gpt-4o-mini, o1-preview, o1-mini).\n"
|
|
"/search `<truy vấn>` - Tìm kiếm trên Google và gửi kết quả đến mô hình AI.\n"
|
|
"/web `<url>` - Thu thập dữ liệu từ trang web và gửi đến mô hình AI.\n"
|
|
"/generate `<gợi ý>` - Tạo hình ảnh từ gợi ý văn bản.\n"
|
|
"/reset - Đặt lại lịch sử trò chuyện của bạn.\n"
|
|
"/remaining_turns - Kiểm tra số lượt trò chuyện còn lại cho mỗi mô hình.\n"
|
|
"/user_stat - Nhận thông tin về token đầu vào, token đầu ra và mô hình hiện tại của bạn.\n"
|
|
"/help - Hiển thị tin nhắn trợ giúp này.\n"
|
|
)
|
|
await interaction.response.send_message(help_message, ephemeral=True)
|
|
|
|
|
|
# Function to check if the bot should respond to a message
|
|
def should_respond_to_message(message: discord.Message) -> bool:
|
|
"""Checks if the bot should respond to the message."""
|
|
is_bot_reply = (message.reference and
|
|
message.reference.resolved and
|
|
message.reference.resolved.id == 1270288366289813556)
|
|
is_mention = bot.user.mentioned_in(message)
|
|
is_dm = message.guild is None
|
|
return is_bot_reply or is_mention or is_dm
|
|
|
|
# Function to send a response to the user
|
|
async def send_response(interaction: discord.Interaction, reply: str):
|
|
"""Sends the reply to the user, handling long responses."""
|
|
if len(reply) > 2000:
|
|
with open("response.txt", "w") as file:
|
|
file.write(reply)
|
|
await interaction.followup.send("The response was too long, so it has been saved to a file.", file=discord.File("response.txt"))
|
|
else:
|
|
await interaction.followup.send(reply)
|
|
|
|
# Event to handle incoming messages
|
|
@bot.event
|
|
async def on_message(message: discord.Message):
|
|
"""Handles incoming messages, responding to replies, mentions, and DMs."""
|
|
if message.author == bot.user:
|
|
return
|
|
|
|
if should_respond_to_message(message):
|
|
await handle_user_message(message)
|
|
else:
|
|
await bot.process_commands(message)
|
|
|
|
async def handle_user_message(message: discord.Message):
|
|
user_id = message.author.id
|
|
history = get_history(user_id)
|
|
model = get_user_model(user_id)
|
|
|
|
# Initialize content list for the current message
|
|
content = []
|
|
|
|
# Add message content if present
|
|
if message.content:
|
|
content.append({"type": "text", "text": message.content})
|
|
|
|
# Supported text/code file extensions
|
|
supported_file_types = [
|
|
".txt", ".json", ".py", ".cpp", ".js", ".html",
|
|
".css", ".xml", ".md", ".java", ".cs",
|
|
".rb", ".go", ".ts", ".swift", ".kt",
|
|
".php", ".sh", ".bat", ".pl", ".r",
|
|
".sql", ".yaml", ".yml", ".ini", ".cfg",
|
|
".tex", ".csv", ".log", ".lua", ".scala",
|
|
".hs", ".erl", ".ex", ".clj", ".jsx",
|
|
".tsx", ".vue", ".svelte", ".dart", ".m",
|
|
".groovy", ".ps1", ".vb", ".asp", ".aspx",
|
|
".jsp", ".dart", ".coffee", ".nim", ".vala",
|
|
".fish", ".zsh", ".csh", ".tcsh", ".mk",
|
|
".make", ".Dockerfile", ".env", ".graphql",
|
|
".twig", ".hbs", ".liquid"
|
|
]
|
|
|
|
# Process attachments if any
|
|
image_urls = []
|
|
if message.attachments:
|
|
attachments = message.attachments
|
|
for attachment in attachments:
|
|
if any(attachment.filename.endswith(ext) for ext in supported_file_types):
|
|
file_content = await attachment.read()
|
|
try:
|
|
user_message_content = file_content.decode("utf-8")
|
|
content.append({"type": "text", "text": user_message_content})
|
|
except UnicodeDecodeError:
|
|
await message.channel.send("Error: The file appears to be binary data, not a text file.")
|
|
return
|
|
else:
|
|
image_urls.append(attachment.url)
|
|
# Add image URLs to content
|
|
content.append({"type": "image_url", "image_url": {"url": attachment.url}})
|
|
|
|
# If no content was added, add a default message
|
|
if not content and not image_urls:
|
|
content.append({"type": "text", "text": "No content."})
|
|
|
|
# Prepare the current message
|
|
current_message = {"role": "user", "content": content}
|
|
history.append(current_message)
|
|
|
|
# Trim history before sending to OpenAI
|
|
trim_history(history)
|
|
|
|
# Prepare messages to send to API
|
|
messages_to_send = history.copy()
|
|
|
|
if model in ["gpt-4o", "gpt-4o-mini", "o1"]:
|
|
# If the model is "o1", rename "system" role to "developer"
|
|
if model == "o1":
|
|
for msg in messages_to_send:
|
|
if msg["role"] == "system":
|
|
msg["role"] = "developer"
|
|
elif model != "o1":
|
|
for msg in messages_to_send:
|
|
if msg["role"] == "developer":
|
|
msg["role"] = "system"
|
|
|
|
# Include up to 10 previous images
|
|
def get_last_n_images(history, n=10):
|
|
images = []
|
|
for msg in reversed(history):
|
|
if msg["role"] == "user" and isinstance(msg["content"], list):
|
|
for part in reversed(msg["content"]):
|
|
if part["type"] == "image_url":
|
|
# Add 'details' key to each image
|
|
part["details"] = "high"
|
|
images.append(part)
|
|
if len(images) == n:
|
|
return images[::-1]
|
|
return images[::-1]
|
|
|
|
# Get the last 10 images
|
|
latest_images = get_last_n_images(history, n=10)
|
|
|
|
if latest_images:
|
|
# Remove existing images from the last message
|
|
last_message = messages_to_send[-1]
|
|
if last_message["role"] == "user" and isinstance(last_message["content"], list):
|
|
last_message["content"] = [
|
|
part for part in last_message["content"] if part["type"] != "image_url"
|
|
]
|
|
last_message["content"].extend(latest_images)
|
|
else:
|
|
last_message["content"] = [{"type": "text", "text": last_message["content"]}]
|
|
last_message["content"].extend(latest_images)
|
|
messages_to_send[-1] = last_message
|
|
|
|
# Fix the 431 error by limiting the number of images
|
|
max_images = 10
|
|
total_images = 0
|
|
for msg in messages_to_send:
|
|
if msg["role"] == "user" and isinstance(msg["content"], list):
|
|
image_parts = [part for part in msg["content"] if part.get("type") == "image_url"]
|
|
total_images += len(image_parts)
|
|
if total_images > max_images:
|
|
images_removed = 0
|
|
for msg in messages_to_send:
|
|
if msg["role"] == "user" and isinstance(msg["content"], list):
|
|
new_content = []
|
|
for part in msg["content"]:
|
|
if part.get("type") == "image_url" and images_removed < (total_images - max_images):
|
|
images_removed += 1
|
|
continue
|
|
new_content.append(part)
|
|
msg["content"] = new_content
|
|
|
|
else:
|
|
# Exclude image URLs and system prompts for other models
|
|
for msg in messages_to_send:
|
|
if msg["role"] == "user" and isinstance(msg["content"], list):
|
|
msg["content"] = [
|
|
part for part in msg["content"] if part["type"] != "image_url"
|
|
]
|
|
messages_to_send = [
|
|
msg for msg in messages_to_send if msg.get("role") != "system"
|
|
]
|
|
|
|
try:
|
|
# Prepare API call parameters
|
|
api_params = {
|
|
"model": model,
|
|
"messages": messages_to_send,
|
|
}
|
|
|
|
if model in ["gpt-4o", "gpt-4o-mini"]:
|
|
# Include parameters for 'gpt-4o' models
|
|
api_params.update({
|
|
"temperature": 0.3,
|
|
"max_tokens": 8096,
|
|
"top_p": 0.7,
|
|
})
|
|
|
|
# Send messages to the API
|
|
response = client.chat.completions.create(**api_params)
|
|
|
|
reply = response.choices[0].message.content
|
|
history.append({"role": "assistant", "content": reply})
|
|
save_history(user_id, history)
|
|
|
|
await send_response(message.channel, reply)
|
|
|
|
except RateLimitError:
|
|
error_message = (
|
|
"Error: Rate limit exceeded for your model. "
|
|
"Please try again later or use /choose_model to change to any models else."
|
|
)
|
|
logging.error(f"Rate limit error: {error_message}")
|
|
await message.channel.send(error_message)
|
|
|
|
except Exception as e:
|
|
error_message = f"Error: {str(e)}"
|
|
logging.error(f"Error handling user message: {error_message}")
|
|
await message.channel.send(error_message)
|
|
db.user_histories.delete_one({'user_id': user_id})
|
|
|
|
# Function to trim the history to avoid exceeding token limits
|
|
def trim_history(history):
|
|
"""Trims the history to avoid exceeding token limits by removing older messages first."""
|
|
tokens_used = sum(len(str(item['content'])) for item in history)
|
|
max_tokens_allowed = 9000
|
|
# Remove from the front (oldest) while total tokens exceed limit
|
|
while tokens_used > max_tokens_allowed and len(history) > 1:
|
|
removed_item = history.pop(0)
|
|
tokens_used -= len(str(removed_item['content']))
|
|
|
|
# Function to send a response to the channel
|
|
async def send_response(channel: discord.TextChannel, reply: str):
|
|
"""Sends the reply to the channel, handling long responses."""
|
|
if len(reply) > 2000:
|
|
with open("response.txt", "w") as file:
|
|
file.write(reply)
|
|
await channel.send(
|
|
"The response was too long, so it has been saved to a file.",
|
|
file=discord.File("response.txt")
|
|
)
|
|
else:
|
|
await channel.send(reply)
|
|
|
|
# Slash command for image generation (/generate)
|
|
@tree.command(name='generate', description='Generates an image from a text prompt.')
|
|
@app_commands.describe(prompt='The prompt for image generation')
|
|
async def generate_image(interaction: discord.Interaction, prompt: str):
|
|
await interaction.response.defer(thinking=True) # Indicate that the bot is processing
|
|
await _generate_image_command(interaction, prompt)
|
|
async def _generate_image_command(interaction: discord.Interaction, prompt: str):
|
|
try:
|
|
# Create an image generation request
|
|
request_image = IImageInference(
|
|
positivePrompt=prompt,
|
|
model="runware:100@1",
|
|
numberResults=4,
|
|
height=512,
|
|
width=512
|
|
)
|
|
|
|
# Call the API to get the results
|
|
images = await runware.imageInference(requestImage=request_image)
|
|
|
|
# Check the API's return value
|
|
if images is None:
|
|
raise ValueError("API returned None for images")
|
|
|
|
# Download images from URL and send as attachments
|
|
image_files = []
|
|
async with aiohttp.ClientSession() as session:
|
|
for image in images:
|
|
async with session.get(image.imageURL) as resp:
|
|
if resp.status == 200:
|
|
image_files.append(await resp.read())
|
|
else:
|
|
logging.error(f"Failed to download image: {image.imageURL} with status {resp.status}")
|
|
|
|
# Send images as attachments
|
|
if image_files:
|
|
await interaction.followup.send(files=[discord.File(io.BytesIO(img), filename=f"image_{i}.png") for i, img in enumerate(image_files)])
|
|
else:
|
|
await interaction.followup.send("No images were generated.")
|
|
except Exception as e:
|
|
error_message = f"An error occurred: {str(e)}"
|
|
logging.error(f"Error in _generate_image_command: {error_message}")
|
|
await interaction.followup.send(error_message)
|
|
|
|
# Task to change status every minute
|
|
@tasks.loop(minutes=5)
|
|
async def change_status():
|
|
while True:
|
|
for status in statuses:
|
|
await bot.change_presence(activity=discord.Game(name=status))
|
|
await asyncio.sleep(300) # Change every 60 seconds
|
|
|
|
@bot.event
|
|
async def on_ready():
|
|
"""Bot startup event to sync slash commands and start status loop."""
|
|
await tree.sync() # Sync slash commands
|
|
print(f"Logged in as {bot.user}")
|
|
change_status.start() # Start the status changing loop
|
|
|
|
|
|
# Start Flask in a separate thread
|
|
flask_thread = threading.Thread(target=run_flask)
|
|
flask_thread.daemon = True # Ensure it closes when the main program exits
|
|
flask_thread.start()
|
|
|
|
# Main bot startup
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
|
|
bot.run(TOKEN)
|