Files
ChatGPT-Discord-Bot/docs/COMPLETE_IMPLEMENTATION_SUMMARY.md
cauvang32 9c180bdd89 Refactor OpenAI utilities and remove Python executor
- Removed the `analyze_data_file` function from tool definitions to streamline functionality.
- Enhanced the `execute_python_code` function description to clarify auto-installation of packages and file handling.
- Deleted the `python_executor.py` module to simplify the codebase and improve maintainability.
- Introduced a new `token_counter.py` module for efficient token counting for OpenAI API requests, including support for Discord image links and cost estimation.
2025-10-02 21:49:48 +07:00

321 lines
16 KiB
Markdown

# Complete Implementation Summary
## ✅ All Requirements Implemented
### 1. ✅ File Storage with User Limits
- **Location**: `/tmp/bot_code_interpreter/user_files/{user_id}/`
- **Per-User Limit**: `MAX_FILES_PER_USER` in `.env` (default: 20 files)
- **Auto-Cleanup**: When limit reached, oldest file automatically deleted
- **Expiration**: Files expire after `FILE_EXPIRATION_HOURS` (default: 48 hours, -1 for permanent)
- **Metadata**: MongoDB stores file_id, filename, file_type, expires_at, etc.
### 2. ✅ Universal File Access
- **By Code Interpreter**: All files accessible via `load_file(file_id)`
- **By AI Model**: File info in conversation context with file_id
- **Smart Loading**: Auto-detects file type and loads appropriately
- **200+ File Types**: CSV, Excel, JSON, Parquet, HDF5, NumPy, Images, Audio, Video, etc.
### 3. ✅ All Work Through Code Interpreter
- **Single Execution Path**: Everything runs through `execute_python_code`
- **Removed**: Deprecated `analyze_data_file` tool
- **Unified**: Data analysis, Python code, file processing - all in one place
- **Auto-Install**: Packages auto-install when imported
- **Auto-Capture**: Generated files automatically sent to user
### 4. ✅ 200+ File Types Support
- **Tabular**: CSV, Excel, Parquet, Feather, etc.
- **Structured**: JSON, YAML, XML, TOML, etc.
- **Binary**: HDF5, Pickle, NumPy, MATLAB, etc.
- **Media**: Images, Audio, Video (20+ formats each)
- **Code**: 50+ programming languages
- **Scientific**: DICOM, NIfTI, FITS, VTK, etc.
- **Geospatial**: GeoJSON, Shapefile, KML, etc.
- **Archives**: ZIP, TAR, 7Z, etc.
### 5. ✅ Configurable Code Execution Timeout
- **Configuration**: `CODE_EXECUTION_TIMEOUT` in `.env` (default: 300 seconds)
- **Smart Timeout**: Only counts actual code execution time
- **Excluded from Timeout**:
- Environment setup
- Package installation
- File upload/download
- Result collection
- **User-Friendly**: Clear timeout error messages
---
## 📊 Architecture Overview
```
┌─────────────────────────────────────────────────────────────────┐
│ User Uploads File │
│ (Any of 200+ file types) │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ upload_discord_attachment() │
│ • Detects file type (200+ types) │
│ • Checks user file limit (MAX_FILES_PER_USER) │
│ • Deletes oldest if limit reached │
│ • Saves to /tmp/bot_code_interpreter/user_files/{user_id}/ │
│ • Stores metadata in MongoDB │
│ • Sets expiration (FILE_EXPIRATION_HOURS) │
│ • Returns file_id │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ MongoDB (Metadata) │
│ { │
│ file_id: "abc123", │
│ user_id: "12345", │
│ filename: "data.csv", │
│ file_type: "csv", │
│ file_size: 1234567, │
│ file_path: "/tmp/.../abc123.csv", │
│ uploaded_at: "2025-10-02T10:00:00", │
│ expires_at: "2025-10-04T10:00:00" │
│ } │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ User Asks to Process File │
│ "Analyze this data", "Create plots", etc. │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ AI Model (GPT-4) │
│ • Sees file context with file_id in conversation │
│ • Generates Python code: │
│ df = load_file('abc123') │
│ df.describe() │
│ plt.plot(df['x'], df['y']) │
│ plt.savefig('plot.png') │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ execute_python_code() │
│ 1. Validate code security │
│ 2. Ensure venv ready (NOT counted in timeout) │
│ 3. Install packages if needed (NOT counted in timeout) │
│ 4. Fetch all user files from DB │
│ 5. Inject load_file() function with file_id mappings │
│ 6. Write code to temp file │
│ 7. ⏱️ START TIMEOUT TIMER │
│ 8. Execute Python code in isolated venv │
│ 9. ⏱️ END TIMEOUT TIMER │
│ 10. Capture stdout, stderr, generated files │
│ 11. Return results │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ Isolated Python Execution │
│ │
│ FILES = {'abc123': '/tmp/.../abc123.csv'} │
│ │
│ def load_file(file_id): │
│ path = FILES[file_id] │
│ # Smart auto-detection: │
│ if path.endswith('.csv'): │
│ return pd.read_csv(path) │
│ elif path.endswith('.xlsx'): │
│ return pd.read_excel(path) │
│ elif path.endswith('.parquet'): │
│ return pd.read_parquet(path) │
│ # ... 200+ file types handled ... │
│ │
│ # User's code executes here with timeout │
│ df = load_file('abc123') # Auto: pd.read_csv() │
│ print(df.describe()) │
│ plt.plot(df['x'], df['y']) │
│ plt.savefig('plot.png') # Auto-captured! │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ Auto-Capture Results │
│ • stdout/stderr output │
│ • Generated files: plot.png, results.csv, etc. │
│ • Execution time │
│ • Success/error status │
└────────────────────────────┬────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ Send Results to Discord │
│ • Text output (stdout) │
│ • Generated files as attachments │
│ • Error messages if any │
│ • Execution time │
└─────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ Background Cleanup │
│ • After FILE_EXPIRATION_HOURS: Delete expired files │
│ • When user exceeds MAX_FILES_PER_USER: Delete oldest │
│ • Remove from disk and MongoDB │
└─────────────────────────────────────────────────────────────────┘
```
---
## 📝 Configuration (.env)
```bash
# Discord & API Keys
DISCORD_TOKEN=your_token_here
OPENAI_API_KEY=your_api_key_here
OPENAI_BASE_URL=https://models.github.ai/inference
MONGODB_URI=your_mongodb_uri_here
# File Management
FILE_EXPIRATION_HOURS=48 # Files expire after 48 hours (-1 = never)
MAX_FILES_PER_USER=20 # Maximum 20 files per user
# Code Execution
CODE_EXECUTION_TIMEOUT=300 # 5 minutes timeout for code execution
```
---
## 🎯 Key Features
### 1. Universal File Support
- ✅ 200+ file types
- ✅ Smart auto-detection
- ✅ Automatic loading
### 2. Intelligent File Management
- ✅ Per-user limits
- ✅ Automatic cleanup
- ✅ Expiration handling
### 3. Unified Execution
- ✅ Single code interpreter
- ✅ Auto-install packages
- ✅ Auto-capture outputs
### 4. Smart Timeout
- ✅ Configurable duration
- ✅ Only counts code runtime
- ✅ Excludes setup/install
### 5. Production Ready
- ✅ Security validation
- ✅ Error handling
- ✅ Resource management
---
## 🧪 Testing Examples
### Test 1: CSV File Analysis
```python
# Upload data.csv
# Ask: "Analyze this CSV file"
# AI generates:
import pandas as pd
import matplotlib.pyplot as plt
df = load_file('file_id') # Auto: pd.read_csv()
print(df.describe())
df.hist(figsize=(12, 8))
plt.savefig('histograms.png')
```
### Test 2: Parquet File Processing
```python
# Upload large_data.parquet
# Ask: "Show correlations"
# AI generates:
import pandas as pd
import seaborn as sns
df = load_file('file_id') # Auto: pd.read_parquet()
corr = df.corr()
sns.heatmap(corr, annot=True)
plt.savefig('correlation.png')
```
### Test 3: Multiple File Types
```python
# Upload: data.csv, config.yaml, model.pkl
# Ask: "Load all files and process"
# AI generates:
import pandas as pd
import yaml
import pickle
df = load_file('csv_id') # Auto: pd.read_csv()
config = load_file('yaml_id') # Auto: yaml.safe_load()
model = load_file('pkl_id') # Auto: pickle.load()
predictions = model.predict(df)
results = pd.DataFrame({'predictions': predictions})
results.to_csv('predictions.csv')
```
### Test 4: Timeout Handling
```python
# Set CODE_EXECUTION_TIMEOUT=60
# Upload data.csv
# Ask: "Run complex computation"
# AI generates code that takes 70 seconds
# Result: TimeoutError after 60 seconds with clear message
```
---
## 📚 Documentation Files
1. **UNIFIED_FILE_SYSTEM_SUMMARY.md** - Complete file system overview
2. **ALL_FILE_TYPES_AND_TIMEOUT_UPDATE.md** - Detailed implementation
3. **QUICK_REFERENCE_FILE_TYPES_TIMEOUT.md** - Quick reference guide
4. **THIS FILE** - Complete summary
---
## ✅ Verification Checklist
- [x] Files saved to code_interpreter system
- [x] Per-user file limits enforced (MAX_FILES_PER_USER)
- [x] Files expire automatically (FILE_EXPIRATION_HOURS)
- [x] 200+ file types supported
- [x] Files accessible via file_id
- [x] Smart load_file() auto-detection
- [x] All work runs through code_interpreter
- [x] Removed deprecated analyze_data_file
- [x] Configurable timeout (CODE_EXECUTION_TIMEOUT)
- [x] Timeout only counts code execution
- [x] Auto-install packages
- [x] Auto-capture generated files
- [x] MongoDB stores metadata only
- [x] Disk cleanup on expiration
- [x] Clear error messages
- [x] Production-ready security
---
## 🎉 Result
**The bot now has a production-ready, ChatGPT-like file handling system:**
1.**Upload any file** (200+ types)
2.**Automatic management** (limits, expiration, cleanup)
3.**Smart loading** (auto-detects type)
4.**Unified execution** (one code interpreter)
5.**Configurable timeout** (smart timing)
6.**Auto-everything** (packages, outputs, cleanup)
**Simple. Powerful. Production-Ready. 🚀**